

1 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Need for speed

How to use eZ Find search fetch instead of
standard content list/tree fetch

By Ivo Lukač

http://www.netgen.hr/eng/blog

2 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Index	

Goal	
 description ..3	

Introduction ..3	

Pre-­‐requisites	
 and	
 target	
 population ...3	

Step	
 1:	
 Understanding	
 the	
 basic	
 notions..4	

Recommended	
 settings..6	

Step	
 2:	
 Understanding	
 eZ	
 Find’s	
 fetch	
 function	
 for	
 search ...7	

Step	
 3:	
 Mapping	
 legacy	
 fetch	
 parameters	
 to	
 eZ	
 Find	
 search	
 parameters8	

Step	
 4:	
 Examples ...10	

Example	
 1 ...10	

Example	
 2 ...10	

Step	
 5:	
 Leveraging	
 what	
 is	
 beyond	
 the	
 standard	
 functionality ...11	

Text	
 search..11	

Facets..11	

Boosting ..12	

Highlighting...13	

Spell	
 checking ...13	

Step	
 6:	
 How	
 to	
 ponder	
 the	
 replacement	
 of	
 a	
 legacy	
 fetch	
 by	
 eZ	
 Find’s	
 search............................14	

Benefits:..14	

Drawbacks: ...14	

Some	
 ideas	
 for	
 eZ	
 Find	
 improvements: ..14	

Conclusion...15	

Resources..15	

About	
 the	
 author	
 :	
 Ivo	
 Lukač ...15	

License	
 choice ...15	

3 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Goal description
This tutorial should give eZ Publish developers some new ideas on how to use eZ Find. The ever growing need
for speed can be achieved by using eZ Find search function instead of standard content list/tree fetch
functions. Solr engine, used by eZ Find, is far more superior regarding read speed than mysql (at least in the
way eZ Publish uses them). This fact becomes apparent when dealing with 10 or 100 thousands of objects in
your database with complicated eZ Publish SQL queries starting to slow down rapidly. If you need text search
capabilities difference in read speed becomes even more obvious.

Introduction
The main goal here is to replace standard content list/tree template fetch functions (which use SQL queries)
with eZ Find search fetch function (which uses the Solr indexing engine). Reason for this is to gain more
speed as Solr is way faster in case of large site with 10 thousands of objects or more. Additional benefit is
the text searching capability of Solr, which can be used to enrich functionalities available on the website.
There are some drawbacks and some situations where Solr search fetch function cannot be used for replacing
standard eZ Publish fetch functions, and these will be covered.

This tutorial could be even more usable in the future because of the direction where eZ Find development is
headed, as it will be possible to store entire objects in the Solr index. In this case it will not be needed to
use database at all, in order to fetch content nodes.

Today, although we cannot avoid using SQL queries entirely (we can get list of nodes from Solr but the node
content is still fetched from the database), performance gains in using Solr instead of standard eZ Publish
fetch functions can be huge.

Pre-requisites and target population
This tutorial is written for experienced eZ developers who already use eZ Find, as well as for intermediate eZ
developers who did not yet use eZ Find but are planning to do so. As we will not cover installation of eZ Find,
the main requirement is to have eZ Find installed and working. More information on eZ Find can be found
here: http://ez.no/ezfind

4 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 1: Understanding the basic notions
Before digging in it is important to know few things.

The first thing you need to be aware of is that eZ Find is using database of its own, based on the well known
Solr/Lucene search engine. More info on Solr can be found here: http://lucene.apache.org/solr/. A citation from
that web page:

“blazing fast open source enterprise search platform”

So the content needs to be indexed (transferred to Solr database) every time it is created or changed. If for
some reason the indexation process fails you will not have up-to-date data in the index.

The indexation task is carried out by eZ Find search plugin. There are 3 ways how it can be configured:

- after publish (drawback is that it burdens the publish process),

- delayed to cronjob (drawback is that the index is always lagging behind so it may happen that query
results are not 100% correct)

- a combination of first two (new in eZ Find 2.2) with DisableDirectCommits option. Publish is faster
as indexing is queued within Solr and not done immediately (process is commited every
CommitWithin seconds)

There is no silver bullet solution in choosing from these 3 options, as it depends on the way you are using
search functions. If results need to be up-to-date then DelayedIndexing option in ezfind.ini should be
disabled. In that case for faster publish DisableDirectCommits and CommitWithin could be used.

Good practice would be to launch complete reindexing every week just to be sure, because various things can
go wrong here: external tools for binary files can break, etc.

Second important thing is the ‘optimize’ function. Optimize does exactly what the name suggest, basically
it merges more Solr segments (created by update, delete, etc.) into one and by doing so makes searching
faster. Recommendation would be to schedule this with cronjob as it’s not important to be executed right
after content is changed. Therefore OptimizeOnCommit option in ezfind.ini should be disabled.

5 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Third thing is to enable AllowEmptySearch in site.ini. It will enable use of eZ Find search function for listing
nodes without having any search text query. This switch is generally useful to remain disabled if standard
eZSearch engine is used (to prevent exhaustive SQL queries) but with eZ Find it is not an issue, as Solr
handles this much better.

Fourth: indexed fields are only subset of all fields from the database. What fields you can use depends on
what meta data eZ Find maps, what class attributes are searchable and what object attributes are marked
searchable.

Fifth, and last, with version 2.2 eZ Find you have the option to segment the index into more chunks which
can be configured independently – called shards. This can be useful for many things, among which are:

- multilanguage site to distinguish language dependent settings: collation, spellchecker, stemming,
etc.

- search other indexes

More on shards here:
http://ez.no/doc/extensions/ez_find/2_2/advanced_configuration/using_multi_core_features

Sixth: Using eZ Find will give you performance boost but this should not prevent you to use all other caching
possibilities of eZ Publish. To have a page with minimum request to SQL database or Solr engine is still a
must.

6 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Recommended settings
To conclude this basic options here are recommended settings in settings/override/site.ini.append.php:

[SearchSettings]
DelayedIndexing=disabled
AllowEmptySearch=enabled

In extension/ezfind/settings/ezfind.ini:

[IndexOptions]
OptimizeOnCommit=disabled
DisableDirectCommits=true
CommitWithin=2

7 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 2: Understanding eZ Find’s fetch function for search
In fact, the eZ Find search function is still using database but only for fetching node data after search result
list is returned by Solr. SQL queries for getting node data are rather fast and do not present a real problem.
Results are dependent on user rights so we don’t need to worry about access privileges also.

Main characteristics of the search template function:

- It can search text with in all indexed fields (query parameter)

- There are offset and limit parameters for paging (offset & limit parameters)

- There is a sort parameter (sort_by parameter). Default sort is relevance based, but other sorting can
be used also.

- Facets enable drill-down possibilities (facet parameter)

- Filtering with multi nesting conditions on all attributes and meta data (filter parameter)

- Special class parameter for filtering more classes (class_id parameter)

- Subtree array parameter for filtering one or more subtrees (subtree_array parameter)

- Special section parameter for filtering on sections (section_id parameter)

- Ignore visibility parameter to disable or enable of searching hidden nodes (ignore_visibility parameter)

- Limitation parameter for overriding current user access limits (limitation parameter)

There is no parameter for fetching list (instead of tree) but it can be easily achieved with filter. It is possible
to search within more than one parent node. Results can be sorted by relevance, by meta-data or by
attributes. Filter can be built with mix of nested “AND” and “OR” conditions.

The most important gain, if the eZ Find search function is used, is the possibility to combine filtering with
powerful text search. And there are lot of bonus features that can be used also: highlighting , spellchecking,
etc

8 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 3: Mapping legacy fetch parameters to eZ Find search
parameters

eZ Find search function equivalent content list/tree function
parameters

Tree List

Tree or list By default Add to filter following condition:
main_parent_node_id:[PID]

parent_node_id subtree_array

sort_by sort_by

More or less the same except:

- Default is score/relevance ranking based on boost parameters

- No priority sort

- No depth sort

- path_string should be sortable by specifying url_alias field

offset & limit offset & limit

attribute_filter filter

In standard content list/tree function only 1 type of condition can be put
(AND or OR). eZ Find supports more conditions and these conditions can
be nested.

Keep in mind that matching is different. E.g. ‘in’ can be replaced with
(term1 OR term 2). Possibilities to use:

- combinations: ‘OR’ and ‘AND’ with nesting

- ranges: [0 TO *], [* TO 5] , [10 TO 20]

- obligatory (‘+’) and negative (‘-’) operators

extended_attribute_filter filter or eZ Find special rawSolrRequest function

Solr query possibilities are different from SQL query possibilities so
direct comparison does not make much sense. eZ Find rawSolrRequest
function can use only data stored in the index so it will be less capable
then extended_attribute_filter which is written in PHP and can use all

9 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

data from the database.

class_filter_type &
class_filter_array

class_id

For including classes.

Excluding can be done through ezfind.ini ([IndexExclude] section)

only_translated &
language

filter

To narrow down to specific language results can be filtered with e.g.
language_code:ger-DE

There is also a SearchMainLanguageOnly switch in [LanguageSearch]
section in ezfind.ini for using only prime language. Otherwise
SiteLanguageList[] setting in site.ini is used.

For leveraging even more from Solr shards can be used as a specific
index for every language. In that case specific Solr configuration can be
applied per language e.g. collation, stemming, etc.

main_node_only No data in the index.

Generally always returns the main node, but finds the object in other
locations also.

as_object Not implemented yet.

depth No data in index.

limitation limitation

ignore_visibility ignore_visibility

10 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 4: Examples
Few simple examples on how to replace fetch content calls with eZ Find calls.

Example 1
Using standard function:

{fetch('content', 'list',
 hash('parent_node_id', 100,
 'class_filter_type', 'include',
 'class_filter_array, array('article'),
 'sort_by', array(array('modified',false()),
 array('attribute', true(),'article/title'))
))}

Using eZ Find:

{fetch('ezfind', 'search',
 hash('filter', 'main_parent_node_id:100',
 'class_id', array('article'),
 'sort_by', hash('modified', 'desc', 'article/title', 'asc')))}

Listing only child nodes is solved with special filter. Including classes is simpler. Sorting is a bit different
and it needs only one hash, with no nested arrays.

Example 2
Using standard function:

{fetch('content', 'tree',
 hash('parent_node_id', 100,
 'ignore_visibility', true(),
 'limit', 20,
 'offset', 0,
 'attribute_filter', array(array('review/rating',
 'between',
 array(0, 2)))))}

Using eZ Find:

{fetch('ezfind', 'search',
 hash('subtree_array', 100,
 'ignore_visibility', true(),
 'limit', 20,
 'offset', 0,
 'filter', array('review/rating:[0 TO 2]')))}

This example shows even more similarity between standard fetch function and eZ Find search fetch function.
Only difference is the filter with the way how condition is constructed.

11 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 5: Leveraging what is beyond the standard functionality
A few features that standard content fetch functions do not have and eZ Find does (and that are rather
usable):

Text search
Text search is the most powerful feature you can use. Searching for more words can be configured with
“AND” or “OR” logic. Special signs “+” and “-” are used for defining obligatory and negative search terms if
there are more of them. Quoting more words searches for exact phrases.

Facets
Facets are tools for drilling down within fetch results. There are extremely useful for giving user more
information about the data presented by showing number of nodes per facet and by giving possibility to refine
results with clicks. All information about facets is returned within the same result set so only one fetch is
needed.

12 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

More info:
http://ez.no/doc/extensions/ez_find/2_2/customization/customizing_facets_and_drill_down_navigation

Boostin g
Boosting is usable only when sorting by relevance. Can be:

- defined ad-hoc in query, e.g. attr_name_t^1.5

- configured within ezfind.ini [IndexBoost] section based on meta fields, class, attributes, etc

More on boosting:

http://ez.no/doc/extensions/ez_find/2_2/advanced_configuration/index_time_boosting

http://ez.no/doc/extensions/ez_find/2_2/use/advanced_search/tunable_relevancy_ranking

13 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

High ligh tin g
Highlighting is usable only when searching for text. Can emphasize search terms in context where they
appear.

Spell ch eckin g
Spell check is also usable only when searching for text. Can show suggestions for corrected terms based on
indexed values.

More info: http://ez.no/doc/extensions/ez_find/2_2/use/advanced_search/spellchecking

14 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Step 6: How to ponder the replacement of a legacy fetch by eZ
Find’s search

Ben efits:
- Speed, speed & speed

- Score ranking

- Native functionalities: search, facets, boosting, elevation, highlighting, etc.

- Shards for multi language sites

- No need for extra count function

- Simpler and more powerful filtering

- Speed

Drawbacks:
- Data duplication heavily dependent on syncing to be up-to-date

- No sort by priority nor depth (could be easily implemented by storing this information as meta fields)

- No main_node_only switch

- No class excluding in query, just an ini setting

- Filtering can use only data in the index (which is a subset of data from the database) and there is no
way of defining extended filter in PHP

Some id eas for eZ F in d improvemen ts:
- Increase robustness for indexing to be sure that all data is indexed

- Index more meta data like depth, priority, main node bool, etc.

- Directly index binary files in Solr

15 / 15

eZ Community Knowledge Base : http://share.ez.no/tutorials | http://share.ez.no/articles
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

Conclusion
If you have large site with lot of object and lot of page views performance is often a very important issue.
View caching, cache blocks, static cache and reverse proxies are, of course, important ways to gain
performance. But there are situations where the raw fetch speed is also very important. If you can manage to
implement those fetches with eZ Find you will have instant positive effects:

- fetch itself is faster,

- database has less SQL queries to process and therefore can faster deal with other (concurrent)
queries.

Additional functionalities that eZ Find provides are like a cream on top.

Happy coding!

Resources
http://ez.no/doc/ez_publish/technical_manual/4_x/reference/modules/content/fetch_functions/list

http://ez.no/doc/extensions/ez_find/2_2/customization/template_fetch_functions

About the author : Ivo Lukač

Working at Netgen, Zagreb, Croatia
Tech: CMS, eZ Publish, eZ Find, PHP, Linux, MySQL, Apache, Varnish
Services: system architecture, consulting, development, support, maintenance, upgrades

License choice
• GNU Free Documentation License (GFDL)

http://www.gnu.org/copyleft/fdl.html

